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Abstract. The Internet of Things (IoT) has seen remarkable growth
in recent years, but the data volatility and limited energy resources in
these networks pose significant challenges. In addition, traditional qual-
ity of service metrics like throughput, latency, packet delay variation, and
error rate remain important benchmarks. In this work, we explore the
application of Markov Chain Monte Carlo (MCMC) methods to address
these issues by designing efficient caching policies. Without the necessity
for prior knowledge or context, MCMC methods provide a promising al-
ternative to traditional caching schemes and existing machine learning
models. We propose an MCMC-based caching strategy that can improve
both cache hit rates and energy efficiency in IoT networks. Additionally,
we introduce a hierarchical caching structure that allows parent nodes to
process requests from several edge nodes and make autonomous caching
decisions. Our experimental results indicate that the MCMC-based ap-
proach outperforms both traditional and other ML-based caching poli-
cies significantly. For environments where file popularity changes over
time, we propose an MCMC-based adaptive caching solution. This solu-
tion detects shifts in popularity distribution using clustering and cluster
similarity metrics, leading to an MCMC adaptation process. This adapt-
ability further enhances the efficiency and effectiveness of our caching
scheme, reducing training time and improving overall performance.

Keywords: Internet of Things · Deep Reinforcement Learning · MCMC
Methods · Edge Cache · Cache Memory · IoT Systems · Energy-Efficiency.

1 Introduction

In the era of the Internet of Things (IoT), rapid data proliferation and in-
creased demand for high-speed, reliable connections necessitate smarter net-
working strategies. Caching, especially edge caching, has emerged as an effec-
tive solution for mitigating network congestion and improving response times
by allowing edge nodes to store frequently requested files. However, traditional
caching methods such as Least Frequently Used (LFU) and Least Recently Used
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(LRU) are insufficient in addressing the multifaceted challenges of IoT networks.
These challenges arise from the dynamic nature of data, limited energy resources,
and the vast scale and complexity of these networks, which intricately complicate
decision-making processes

Recent advancements in artificial intelligence and machine learning have in-
troduced innovative solutions to these challenges. Deep Reinforcement Learning
(DRL), a subfield of machine learning, offers a promising approach to solve com-
plex caching problems without requiring extensive prior network knowledge or
explicit feature definitions. Nonetheless, addressing IoT-specific constraints, such
as data freshness and energy limitations, calls for a more tailored solution. This
paper thus introduces a pioneering application of Markov Chain Monte Carlo
(MCMC) methods and DRL to devise a novel, energy-efficient caching strategy
specifically designed for IoT networks.

Our proposed approach incorporates a unique hierarchical architecture that
captures region-specific popularity distributions, providing a more practical and
robust solution. In the following sections, we delve deeper into the technical de-
tails of our model, illustrating its superior performance through a comprehensive
suite of experimental results.

The structure of the rest paper is as follows. In Section 2, we offer a detailed
examination of previous works. Section 3 presents the problem formulation of
our approach to framing the IoT caching problem as a Markov decision process
(MDP), wherein we establish the state and reward function for DRL training,
mindful of the lifespan of IoT data. Section 4 details our utilization of the prox-
imal policy optimization solver to resolve the MDP problem, emphasizing the
incorporation of both MCMC and DRL methods. Section 5 showcases a spectrum
of experimental results, highlighting the superior performance of our proposed
caching strategy compared to traditional techniques. Section 6 summarizes the
further extensions, and applications of the proposed caching strategies in the
context of cloud computing. Finally, Section 7 brings together our insights and
provides a concluding summary of the study.

2 Background and Related Work

Edge caching has emerged as an innovative technology that leverages edge nodes
(e.g., base stations or user devices) to be a part of the caching architecture,
thereby drastically reducing the response time and load on the backhaul link
[24]. Traditional caching strategies, such as Least Frequently Used (LFU) and
Least Recently Used (LRU), despite their effectiveness in conventional settings,
have shown limitations when applied to the IoT environments [21,33,45], and es-
pecially in scenarios addressing risks and vulnerabilities closely related to climate
change (e.g. flood risk, risk of fire, erosion, landslides and landslides).

With the surge of interest in artificial intelligence and machine learning,
Reinforcement Learning (RL) has gained considerable attention for its poten-
tial to address these complex problems. More specifically, Deep Reinforcement
Learning (DRL), which combines deep learning and RL, has shown remarkable
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potential in addressing problems with enormous searching spaces without the
need for prior knowledge about network features [46]. The application of DRL
to caching problems has been explored in different scenarios, such as Content
Delivery Networks (CDNs) [28,45], mobile networks [13], and Internet of Things
(IoT) networks [11,15,23,36]. However, many of these works have not sufficiently
addressed the unique constraints of IoT systems, particularly the limited data
lifetime and energy constraints [11,12,15,23,35,36,44].

Several studies have focused on the role of multiple edge nodes in caching,
either through non-cooperative or cooperative caching schemes [15,35,36,44]. For
example, cooperative caching schemes involving multiple nodes exchanging in-
formation with each other or with a central server have shown promising results
[15,44]. A recent study by Wang et.al. [35] utilized a federated deep reinforce-
ment learning method for cooperative edge caching, achieving performance on
par with the centralized DRL approach but with significantly reduced perfor-
mance degradation.

Despite these advancements, a critical challenge unique to IoT networks re-
mains underexplored - the issue of data freshness, a consequence of periodic data
generation and limited data lifespan in IoT networks. This has not been ade-
quately addressed in the previous works [11,12,15,44]. In light of these considera-
tions, the focus of our study is to develop an adaptive, energy-efficient DRL and
MCMC-based caching strategy. This novel approach aims to comprehensively
address these specific challenges in IoT systems, placing special emphasis on en-
suring data freshness while operating within the stringent energy constraints of
IoT devices.

2.1 Caching in IoT Systems: Fundamentals, Analysis, and
Opportunities

Fundamentals of Caching in IoT Systems: IoT, with its array of connected
devices, generates vast amounts of data. Caching plays an essential role in en-
hancing the efficiency of data access, reducing latency, and optimizing network
traffic. It involves storing frequently accessed data closer to the devices to expe-
dite future access. However, caching in IoT is not without its challenges. Given
the distributed nature of IoT, determining what, where, and how long to cache
data becomes intricate. The limited storage and computational capabilities of
many IoT devices further complicate caching strategies.

Caching significantly enhances the efficiency and performance of Internet of
Things (IoT) systems. Some fundamental aspects of caching aspects of caching
in these systems:

– Hierarchical Caching Systems: Hierarchical caching in edge networks,
especially within 5G small cells, aids smart industrial applications and con-
nected cars. Such systems bolster multiple applications concurrently, though
managing shared resources remains challenging [8].

– Named Data Networking (NDN) and In-network Caching: NDN of-
fers a networking architecture that suits the application-centric nature of IoT
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systems. Integral to NDN is in-network caching, enhancing data accessibility
and reducing both content retrieval delay and network traffic [3].

– Digital Twin Edge Networks (DITEN): Integrating mobile/multi-access
edge computing (MEC) with digital twin (DT) enhances network perfor-
mance and cuts down on communication, computation, and caching ex-
penses. Within DITENs, the state of the network undergoes consistent mon-
itoring, enabling centralized, efficient networking [31].

– Optical Networks on Chip (ONoC): Increased on-chip processing re-
quirements in IoT systems, driven by advancements in 5G, IoT, and data
centers, benefit from ONoC. ONoC’s efficacy is contingent on the efficiency
of optical routers [30].

– Information-Centric Networking (ICN): Envisioned as a next-generation
Internet architecture, ICN prioritizes content-centric design. It has the po-
tential to accelerate expansive IoT deployment by ensuring enhanced per-
formance, scalability, and security [26].

– Collaborative Edge Computing (CEC) and Trustworthiness: CEC,
an extension of various edge paradigms, caters to latency-sensitive, computation-
heavy applications in edge-centric networks. Trust among CEC participants
is pivotal, with blockchain-empowered frameworks like BlockEdge ensuring
collaborative service security [37].

Comparative Analysis: Several techniques have been proposed for IoT caching,
each with its own merits and demerits. For instance, traditional methods like
LRU might be simplistic and efficient but can be suboptimal for IoT’s dynamic
environment. On the other hand, advanced methods like DRL-based strategies
adapt to changing environments but might come with higher computational
overheads. Emerging techniques, though less explored, such as federated learn-
ing for caching, show promise by leveraging the distributed nature of IoT while
ensuring data privacy. A comprehensive understanding requires a deep dive into
each technique, comparing their suitability for specific IoT scenarios.

Research Gaps and Opportunities: While significant progress has been
made, certain challenges remain unaddressed. For instance, ensuring data fresh-
ness in caches, considering the periodic data generation in IoT, hasn’t been
explored thoroughly. The incorporation of energy efficiency with caching strate-
gies, especially for battery-operated IoT devices, is another understudied area.
These gaps present rich opportunities for future research. The confluence of IoT
with other emerging technologies, like edge computing or blockchain, can also
lead to innovative caching strategies that are yet to be explored.

Data Freshness in IoT Systems: In the context of IoT, data freshness per-
tains to the temporal relevance of the cached data. As IoT devices frequently
generate and transmit data, ensuring that the cached data is up-to-date becomes
crucial for accurate and timely decision-making. Data freshness is especially es-
sential in scenarios like health monitoring or real-time surveillance where stale
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data can lead to undesired consequences. However, maintaining data freshness
in caching poses challenges. Given the sporadic and voluminous data generation
in IoT, devising strategies to periodically update caches without overwhelming
the network or draining device resources is intricate.

Energy Constraints in IoT Devices: IoT ecosystems are populated by
a multitude of devices, many of which are battery-operated with limited en-
ergy reserves. These constraints necessitate energy-efficient operations, including
caching. Every caching decision, from data storage to retrieval, consumes energy.
The challenge is to optimize these decisions such that they not only improve data
access but also prolong device lifetime. This necessitates caching strategies that
are cognizant of the energy profile of IoT devices and can adapt to their energy
constraints.

Cooperative Caching in IoT Systems: Cooperative caching refers to a strat-
egy where multiple nodes (devices or servers) collaborate to store and retrieve
cached data. In IoT scenarios, where devices are often spatially distributed and
possess limited storage, cooperative caching can be a game-changer. By allowing
devices to fetch data from nearby caches rather than a distant server, it can dras-
tically reduce latency and network congestion. While the idea is promising, its
implementation in IoT is non-trivial. Factors like device heterogeneity, network
topology, and data access patterns influence cooperative caching decisions. Sev-
eral works have ventured into this domain, exploring algorithms and protocols
to realize efficient cooperative caching in IoT systems.

2.2 State-of-the-Art (SOTA) Caching Techniques in IoT Systems

Recent research has delved into various caching methods designed for the com-
plexities of IoT systems. Bando et al. offer mechanisms tailored for single-level
storage systems capable of supporting a vast array of IoT devices [5]. Asmat
et al. present the Central Control Caching (CCC) approach, aiming at energy
conservation and reduction in access times [4]. Khodaparas et al. introduce a
software-defined caching strategy, capitalizing on Content-Centric Networking
(CCN) to enhance latency metrics and optimize resource deployment, also min-
imizing transmission intermediaries [18]. Moreover, Nasehzadeh et al. employ
deep reinforcement learning to devise a caching policy designed to elevate cache
hit rates, economize on energy, and account for the limited data lifespan typical
of IoT networks [22].

More specialized strategies have been developed to address the complex chal-
lenges essential to the IoT domain. Hongda Wu et al. investigate the integration
of deep reinforcement learning in enhancing IoT caching, underscoring notable
advancements in cache hit rates and energy optimization [38]. Jingjing Yao et
al. emphasize the significance of caching within IoT gateways, positing that the
strategic placement of frequently accessed IoT data at these points optimizes
direct user accessibility [41]. The user-centric paradigm is further exemplified by
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Akhtari Zameel et al., who propose a context-aware caching mechanism to op-
timize content delivery based on user-specific criteria [43]. Complementing this,
Khodaparas et al. present a cooperative caching strategy, achieving a commend-
able 40% enhancement in cache hit rates and expedited content access [19].

State-of-the-art caching techniques have emerged as a pivotal research fo-
cus in IoT systems, primarily in response to the considerable and varied data
generated by IoT devices. These techniques strategically place data to minimize
bandwidth usage and latency, thereby facilitating access for end devices. An
overview of these methods includes:

– Edge Caching: Implementing data storage at the network edge to minimize
latency and preserve bandwidth [10].

– Federated Edge Intelligence with Edge Caching Mechanisms: This
study explores the integration of Edge Caching and Bayesian Optimization
to enhance the performance and efficiency of IoT Systems [16]. Addition-
ally, strategies such as adaptive communication and gradient sparsification
are applied to further refine the algorithm’s effectiveness in federated learn-
ing scenarios. In essence, this approach utilizes edge caching to minimize
communication overhead and applies Bayesian optimization for pragmatic
hyperparameter tuning, thereby improving performance and reducing com-
munication costs in federated learning contexts.

– Collaborative Filtering: Employing artificial intelligence to predict forth-
coming requests from IoT devices by proactively caching relevant data, re-
ducing latency, and improving user experience [10].

– Structural Caching: This technique is employed for stream reasoning, it
caches data based on the respective data stream’s structure, improving sys-
tem efficiency, and expressivity [6].

– Bandwidth-Aware Routing Scheme: Focused on congestion control in
MANETs, it strategically caches data by monitoring residual bandwidth
capacity and queue space, preventing potential congestion [1].

Such strategies and methods can be further integrated with technologies such
as fog computing and SDN-IoT architectures, significantly IoT systems’ opera-
tional efficiency and sustainability [14,42].

2.3 Reinforcement Learning in Caching

Reinforcement Learning (RL) has emerged as a crucial mechanism for enhancing
content delivery and caching efficiency in mobile networks, addressing various
complexities and challenges in mobile caching contexts. For example, a study
in vehicular edge computing (VEC) employed asynchronous federated and deep
reinforcement learning (CAFR) to accurately predict widespread content and
determine optimal cooperative caching locations, considering the constrained
caching capacity of roadside units (RSUs) [39]. Additionally, a comprehensive
survey outlined and classified RL-augmented mobile edge caching solutions,
demonstrating insights across several network frameworks such as fixed cellular,
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fog, cooperative, vehicular, and aerial networks, and categorizing them based on
networking architecture and optimization aims [25].

The application of RL extends to enabling computation offloading and en-
hancing task caching, especially in multi-user and multi-task Mobile Edge Com-
puting (MEC) systems. Employing multi-agent deep reinforcement learning, one
investigation modelled a multi-user multi-server task caching scenario, convert-
ing the task caching issue into a nonlinear integer programming challenge to
streamline computation offloading in 5G MEC [9]. Further, research exploring
Device-to-Device (D2D) supported heterogeneous collaborative edge caching in-
corporated an attention-weighted federated deep reinforcement learning (AWF-
DRL) model. This approach employed federated learning to enhance the training
efficiency of the Q-learning network while managing the constraints of limited
computing and storage capacities [34].

In the following model, merging RL and cross-layer network coding (CLNC)
addressed challenges by effectively pre-loading requested content to local caches
and ensuring its delivery to users in a downlink fog-radio access network (F-
RAN) with D2D communications [2]. Adaptive mechanisms within RL were
also illuminated in research that proposed a distributed resources-efficient Fed-
erated Proactive Caching (FPC) policy. Employing an adaptive FPC (AFPC)
algorithm, it combined deep reinforcement learning (DRL) and employed mech-
anisms of client selection and local iteration number decisions to improve con-
tent caching efficiency and mitigate resource consumption [27]. Consequently,
RL emerges as an essential mechanism in effectively addressing the challenges
existing in optimizing caching and content delivery within mobile networks.

2.4 Deep Reinforcement Learning for IoT Caching

Deep Reinforcement Learning (DRL) serves as a key methodology in formulating
effective caching policies within Internet of Things (IoT) networks. Notably,
DRL demonstrates its capacity to adapt to heterogeneous environments with
scarce prior knowledge, showcasing its suitability for IoT systems characterized
by transient data and restricted energy resources [20,38,40].

One explicit application of DRL in IoT caching addresses the joint caching
and computing service placement (JCCSP) problem, specifically for sensing-
data-driven IoT applications. Within this context, dedicated caching functions
(CFs) are necessitated to cache crucial sensing data, ensuring the Quality of
Service (QoS) for applications in an edge-enabled IoT system [7].

To address the JCCSP problem, a policy network, constructed using the
encoder-decoder model, is formulated. This network manages challenges related
to the varying sizes of JCCSP states and actions, which arise from different num-
bers of CFs associated with applications. Initially, an on-policy reinforce-based
method is utilized for training the policy network. Subsequently, an off-policy
training strategy, grounded on the twin-delayed (TD) deep deterministic policy
gradient (DDPG), is implemented to enhance training efficacy and experience
utilization [7].
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Moreover, DRL-based caching approaches have been developed aiming to in-
crease the cache hit rate and reduce energy usage in IoT networks, while also
taking into account critical aspects such as data freshness and the constrained
lifespan of IoT data [20,38,40]. These strategies employ hierarchical architec-
tures to deploy edge caching nodes within IoT networks and define the caching
problem as a Markov Decision Process. The goal is to minimize the long-term
aggregated cost expectation, while simultaneously considering the average Age
of Information (AoI) of users and the energy expenditure of sensors. To address
this challenge, actor-critic-based caching algorithms are applied [20,36].

In conclusion, DRL-based caching methodologies have demonstrated efficacy
in significantly improving IoT network performance, achieved through judicious
reduction of energy consumption, enhancement of cache hit rate, and minimiza-
tion of average end-to-end delay [20,36,38,40].

3 Problem Formulation

In this section, we re-define our caching problem as a Partially Observable
Markov Decision Process (POMDP) and detail its components, namely, the de-
sign of state, action, and reward function. In addition to the freshness feature of
transient data in the IoT system, we incorporate energy efficiency considerations
into our problem formulation, which is primarily based on Deep Reinforcement
Learning (DRL) and Markov Chain Monte Carlo (MCMC) techniques [17,32].

3.1 Partially Observable Markov Decision Process Modeling

At each time step n, a POMDP is symbolized by the tuple:

sn, an, p(sn+1|sn, an), rn, Ωn, Ωn+1 (1)

where sn ∈ S denotes the current state, an ∈ A the chosen action, p(sn+1|sn, an) ∈
P (S,A) the probability distribution for the next state given the current state
and action, rn is the reward evaluating the action’s effectiveness, Ωn represents
the observation at current state, and Ωn+1 at the next state.

In the context of IoT systems, due to variable network conditions and device
states, the full system state is not always observable, hence our transition from
MDP to POMDP. To counter the partial observability, we maintain a belief
state, bn, a probability distribution over all possible states, which is updated
based on the observation and action at each time step.

Similar to MDP, we aim to maximize the expected cumulative reward as
defined in the equation,

Gn =

T∑
τ=0

γτrn+τ (2)

and to find the optimal policy π∗, which maximizes the expected cumulative
reward,

π∗ = argmax
π

E [Gn | π] (3)
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Value function Vπ(bn) and action-value function Qπ(bn, an) are defined in our
POMDP model, but instead of being functions of the state sn, they are functions
of the belief state bn.

3.2 State, Action, and Reward Incorporating Energy-Efficiency

In the context of IoT systems, due to variable network conditions and device
states, the full system state is not always observable, hence our transition from
MDP to POMDP. To counter the partial observability, we maintain a belief
state, bn, a probability distribution over all possible states, which is updated
based on the observation and action at each time step.

Similar to MDP, we aim to maximize the expected cumulative reward as
defined in the equation,

– Energy Consumption of Cache Memory: The energy consumption of each
cached file, Ecache(fi), can be modeled as the sum of energy used for receiv-
ing, storing, and delivering the file. This can be mathematically represented
as:

Ecache (fi) = Erec (fi) + Estore (fi) + Edel (fi) , (4)

where Erec(fi), Estore(fi), and Edel(fi) represent the energy consumed for
receiving, storing, and delivering the file fi respectively.

– Adaptive Caching Decision: The adaptive caching decision can be repre-
sented as a probability value π(a|bn, Ecache), which indicates the chance of
taking action a given the belief state bn and the energy status Ecache. The
optimal adaptive caching policy can be formulated as:

π∗ (a | bn, Ecache ) = argmax
π

E [Gn | π,Ecache ] (5)

where E[Gn|π,Ecache] is the expected cumulative reward considering the
energy efficiency of the caching strategy.

– Energy-Efficient Reward Function: We modify the reward function to reflect
the energy consumption as a penalty. For each file in the cache memory that
expires without being accessed at least once, a negative reward (punishment)
is given, considering both its freshness and energy consumption.

ri, expire = [sign (ki − 0.5)− 1]× C1 − C2 × Ecache (fi) , (6)

where C1 is the freshness punishment coefficient, and C2 is the energy con-
sumption penalty coefficient.

– Energy-Efficient Q-Function: We adjust the action-value function, or Q-
function, to accommodate the energy consumption. The new Q-function,
Qπ(bn, an, Ecache), is the expected cumulative reward starting from the be-
lief state bn, taking action an, considering the energy consumption Ecache,
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and following the policy π after that. We can express it as:

Qπ (bn, an, Ecache ) =∑
bn+1∈B

p (bn+1 | bn, an)

rn + γ
∑

an+1∈A

π (an+1 | bn+1, Ecache )Qπ (bn+1, an+1, Ecache )

(7)

A comprehensive energy-efficient adaptive DRL-based and MCMC-based caching
strategy for IoT Systems as follows:

Define the comprehensive adaptive caching strategy Σ = (A,Ecache, π,Q)
where A is the action space, Ecache is the energy consumed by the cache memory,
π is the adaptive caching decision policy, andQ is the energy-efficient Q-function.

First, we express the energy consumption of cache memory Ecache as a func-
tion of action a, denoted as Ecache = E(a).

Next, we incorporate this into the adaptive caching decision policy as:

π∗(a|bn, E(a)) = argmax
π

E[Gn|π,E(a)]. (8)

Then, we reformulate the energy-efficient reward function to consider the
energy consumption of each action, denoted as:

ri,expire = [sign(ki − 0.5)− 1]× C1 − C2 × E(a. (9)

Finally, we adjust the energy-efficient Q-function to incorporate the energy
consumption of each action, denoted as:

Qπ(bn, an, E(a)) =
∑

bn+1∈B

p(bn+1|bn, an)

rn + γ
∑

an+1∈A

π(an+1|bn+1, E(an+1))Qπ(bn+1, an+1, E(an+1))

 .

(10)
Therefore, the combined equation for this framework (strategy) can be rep-

resented as:

Σ =

A,E(a), π∗ (a | bn, E(a)) = argmax
π

E [Gn | π,E(a)] , Qπ (bn, an, E(a)) =
∑

bn+1∈I

(11)
Equation 11 incorporates the key components of our proposed strategy and

represents a comprehensive mathematical formulation for an adaptive, energy-
efficient DRL-based and MCMC-based caching strategy for IoT Systems.

4 Methodology

In this section, we propose a novel energy-efficient variant of the Actor-Critic
(AC) models, specifically the Proximal Policy Optimization (PPO) algorithm
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[29]. The PPO algorithm is an advancement over the Trust Region Policy Opti-
mization (TRPO) algorithm, designed to inherit its data efficiency and reliability
while circumventing the need for second-order optimizations.

Our algorithm, named PPO-based Energy-Efficient Caching Strategy 1, is
based on the AC method. Two distinct neural networks, termed the actor (θ)
and critic (θv), are employed to concurrently approximate the policy and value
function. The actor network decides the action to take, i.e., the caching deci-
sion, while the critic network assesses this action, calculating the value function
Vπθ

(sn; θv) based on the energy consumption of the cache memory and the po-
tential energy savings from the caching decision.

Algorithm 1 PPO-based Energy-Efficient Caching Strategy

Require: Initial neural network parameters for actor and critic (θ, θv), initial
cache state s0, energy consumption function E(a), discount factor γ

Ensure: Optimal policy πθ that minimizes the total energy consumption of the
caching system while ensuring the system’s QoS requirements

1: for iteration = 1, 2, ... do
2: Collect a set of trajectories T = {τj} by running the policy πθ in the

environment for T steps, while considering energy consumption E(a) for
each action

3: Estimate advantage values Â1, ..., ÂT considering energy consumption
E(a) and the effect on caching decisions

4: Calculate the rewards and compute Ĝ1, ..., ĜT , incorporating the energy-
efficient reward function ri,expire

5: Optimize surrogate loss w.r.t. θ using stochastic gradient ascent with
Adam: θ ← argmaxθ Lclip(θ)

6: Fit value function by regression on mean squared error using
stochastic gradient descent: θv ← argminθv LVF, where LVF =
1
|T |

∑
τ∈D

∑T
n=0(Vθv (sn)− Ĝn)

2

7: end for

In the proposed Markov Chain Monte Carlo (MCMC)-based Energy-Efficient
Caching Strategy 2, we utilize the statistical sampling method to make optimal
caching decisions that minimize energy consumption. This technique exploits the
probabilistic nature of Markov chains and Monte Carlo simulations to optimize
the state transition, i.e., caching decisions, while considering energy efficiency.

The MCMC approach offers a robust and adaptive mechanism to handle
the dynamism and uncertainties inherent in IoT systems. It iteratively sam-
ples states from a stationary distribution and uses these to guide the caching
strategy. The MCMC-based caching strategy involves transitioning from the cur-
rent state (cache configuration) to a new state in a way that progressively re-
duces energy consumption, navigating towards the optimal caching decision.
This energy-efficient caching strategy performs state transition based on a care-
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fully crafted energy-aware reward function. The reward function is designed to
penalize high energy consumption and reward energy-saving actions, thereby
guiding the MCMC sampler towards energy-efficient caching decisions. Thus,
the MCMC-based strategy provides a powerful tool for realizing energy-efficient
caching in IoT systems.

Algorithm 2 MCMC-based Energy-Efficient Caching Strategy

Require: Initial cache state s0, energy consumption function E(a), discount
factor γ, number of iterations N

Ensure: A sequence of states representing an energy-efficient caching strategy
that minimizes the total energy consumption of the caching system while
ensuring the system’s QoS requirements

1: Initialize current state s = s0 and initial action a = a0
2: for iteration = 1, 2, ..., N do
3: Propose a new action a′ from a proposal distribution q(a′|a)
4: Calculate acceptance probability α using the energy-efficient Q-function

Qπ(bn, an, E(a))
5: Draw a random number u from Uniform(0, 1)
6: if u < α then
7: Update a = a′ and update state s according to action a′

8: else
9: Remain in current state with action a

10: end if
11: Update cache strategy based on new state and action
12: end for

The complexity of the PPO-based algorithm is influenced by the size of the
neural networks used (denoted as P ) and the number of trajectories per itera-
tion (denoted as T ). Generally, the computational complexity is approximately
O(TP ). The Metropolis-Hastings MCMC-based algorithm, in contrast, primar-
ily depends on the number of iterations it performs (denoted as N). Thus, its
computational complexity can be considered as O(N).

5 Simulation and Experimental Results

5.1 Simulation Interface and Setup

To evaluate the performance of the proposed MCMC-based Energy-Efficient
Caching Strategy in comparison to other caching methods, we conducted a sim-
ulation using a hierarchical IoT caching structure. The simulation consists of
one parent node, two edge nodes, and one hundred IoT devices, each producing
a single type of file with a unique ID and a randomly assigned lifetime sam-
pled from a uniform distribution. The popularity distribution of the files follows
Zipf’s law, with a skewness factor α characterizing the distribution.
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We conducted experiments with 24 different settings, combining four request
rate values (w) ranging from 0.5 to 2.0 requests per time step and six values of
the popularity skewness factor α ranging from 0.7 to 1.2. The popularity distri-
butions are unknown to the MCMC-based Energy-Efficient Caching Strategy, as
they are used solely for generating requests in the simulations. Each request is
assumed to be fulfilled before the corresponding user leaves the network.

Comparison Methods: In our evaluation, we compare the performance of the
proposed MCMC-based Energy-Efficient Caching Strategy with two well-known
conventional caching strategies: Least Recently Used (LRU) and Least Fre-
quently Used (LFU) algorithms. Additionally, we implement an existing DRL-
based caching method with a different reward function from ours, denoted as
DRL, to observe the effects of our proposed reward function.

– LRU: In the LRU algorithm, files are ranked based on their recent usage,
and when the cache is full, the least recently used file is replaced with the
new file.

– LFU: Similar to LRU, the LFU algorithm ranks cached items based on the
frequency of their requests. When the cache is full, the file with the least
frequency of requests is replaced by the new file.

– DRL: This existing DRL-based caching method considers the freshness of
files in its reward function. It differs from our proposed MCMC-based Energy-
Efficient Caching Strategy in terms of the reward function design.

5.2 Experimental Results

In this Section, we evaluate our two proposed algorithmic schemes against state-
of-the-art caching techniques. In particular, we access our method against Least
Frequently Used (LFU), Least Recently Used (LRU), and Adopting deep rein-
forcement learning (DRL) methods. The aim is to identify which algorithmic
choice has the best cache hit rate and at the same time the lowest energy con-
sumption.

Figure 1(a) shows the performance of four different caching methods: LFU,
LRU, DRL, and our proposed PPO approach. The performance is measured in
terms of both cache hit rates and energy efficiency, plotted against time inter-
vals. The objective is to visualize how each method responds to increasing time
demands and to assess which method performs optimally under such conditions.
We hypothesize that the PPO method will outperform the others due to its
advanced learning capabilities. As per the skewness α, the results are shown in
Figure 1(b).

The plot demonstrates our hypothesis: the PPO method outperforms LFU,
LRU, and even DRL methods in terms of both cache hit rate and energy ef-
ficiency. As the time interval increases, PPO maintains a steady and high-
performance level, highlighting its robustness and reliability under varying de-
mands. This performance difference accentuates the potential of the PPOmethod
in enhancing caching processes and optimizing system performance. Our future
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Fig. 1. (a) Cache Hit rate vs varying request rates w (b) Hit rates vs popularity
skewness α.

work will focus on refining the PPO method and investigating its potential in
other application areas.

As the popularity skewness α increases, PPO outperforms the other three
methods, achieving the highest cache hit rates. The rapid increase in the PPO
curve signifies its superior adaptability to a skewed distribution, where a small
set of objects is highly popular. On the other hand, LFU, LRU, and DRL show
lower rates, highlighting their limitations in such scenarios. This comparison
emphasizes the strength of PPO in handling highly skewed distributions, making
it an attractive method for improving cache hit rates in systems with similar
characteristics.

As we further explore the performance of the four caching strategies, two
crucial parameters come to the fore: the request rates (w) and the popularity
skewness (α). Both these factors can significantly impact the energy consumption
of the caching mechanisms, which is a critical aspect in energy-sensitive systems.
We present a comparative analysis of energy consumption across different request
rates and popularity skewness in Figure 2.

The plots in Figure 2 highlight the superior performance of the Proximal
Policy Optimization (PPO) method in terms of energy efficiency. In the first
plot, we observe that as the request rate (w) increases, PPO maintains the
lowest energy consumption followed closely by the Deep Reinforcement Learning
(DRL) method. On the other hand, the Least Recently Used (LRU) and Least
Frequently Used (LFU) display higher energy consumption. The second plot
emphasizes the robustness of PPO and DRL under varying levels of popularity
skewness (α). They show a considerably slower rise in energy consumption with
increasing skewness compared to LRU and LFU. These observations underscore
the effectiveness of reinforcement learning-based strategies like PPO and DRL
in managing cache resources efficiently while ensuring energy conservation.

Lastly, the following set of graphs (Figure 3) provides an in-depth look at the
comparative performance of various caching strategies, including the newly pro-
posed MCMC-based Energy-Efficient Caching Strategy. The comparison spans



A DRL-based and MCMC-based Caching Strategy for IoT Systems 15

2 4 6 8 10
Request Rates 

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

En
er

gy
 C

on
su

m
pt

io
n 

(Jo
ul

es
)

PPO (proposed)
LRU
LFU
DRL

2 4 6 8 10
Popularity Skewness 

10

15

20

25

30

35

40

En
er

gy
 C

on
su

m
pt

io
n 

(Jo
ul

es
)

PPO (proposed)
LRU
LFU
DRL

Fig. 2. (a) Energy consumption vs request rates w (b) Energy consumption vs popu-
larity skewness α.

across two major performance indicators - energy consumption and cache hit
rate - with the number of iterations serving as the common parameter. It is es-
sential to consider these metrics while designing a cache management strategy,
as they directly impact the overall system performance.
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Fig. 3. Evolution of Energy Consumption and Cache Hit Rate over Iterations for Dif-
ferent Caching Strategies.

As observed from the graphs, while LFU and LRU strategies have rela-
tively higher energy consumption and lower cache hit rates, the MCMC-based
method displays superior performance in these aspects, falling only behind DRL
and PPO (proposed) strategies. This underlines the efficiency of MCMC-based
caching in utilizing system resources and fulfilling Quality of Service (QoS) re-
quirements. Moreover, it is evident that with an increase in iterations, the energy
consumption for all methods tends to decrease, and the cache hit rate increases.
This shows the inherent learning capability of these strategies that adapt over
time, enhancing their performance. Specifically, the PPO algorithm exhibits the
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highest cache hit rate and lowest energy consumption, emerging as the most
effective caching strategy amongst the lot.

6 Futher Extensions

The proposed PPO-based Energy-Efficient Caching Strategy 1 and MCMC-
based Energy-Efficient Caching Strategy 2 outlined in the paper offer valuable
contributions to the field of IoT systems. However, their implications and po-
tential applications extend beyond the realm of IoT networks and can be fur-
ther extended to the domain of cloud computing. By integrating these caching
strategies into cloud computing architectures, numerous benefits can be realized,
enhancing performance, scalability, and energy efficiency.

Cloud computing environments are characterized by their distributed nature,
involving data centers and edge nodes responsible for storing and processing vast
amounts of data. The incorporation of the PPO-based and MCMC-based caching
strategies into cloud computing frameworks can have a transformative impact.
One key area of improvement lies in cache hit rates. By applying the reinforce-
ment learning and Monte Carlo methods embedded in these strategies, cache
hit rates can be significantly enhanced within cloud computing architectures.
By intelligently caching frequently accessed data and optimizing cache eviction
policies, the proposed strategies enable faster data retrieval, reduced latency,
and improved overall response times for cloud-based applications.

Energy efficiency is vital in cloud computing and can greatly benefit from
these caching strategies. By effectively managing data storage and retrieval,
these strategies optimize energy consumption in cloud infrastructures. Also, they
minimize unnecessary data transfers, reduce idle resource usage, and employ
adaptive caching policies, resulting in significant energy savings. This enhances
the sustainability and cost-effectiveness of cloud computing systems.

Dynamic workload patterns and varying data popularity are common chal-
lenges in cloud computing. The adaptive nature of the PPO-based and MCMC-
based caching strategies enables them to effectively address these challenges. By
continuously monitoring and adapting cache contents based on evolving data
popularity and access patterns, these strategies ensure that the most relevant
and frequently accessed data remains readily available, improving cache hit rates
and system performance in dynamic cloud environments. The integration of these
caching strategies also offers benefits in terms of reducing network congestion
and optimizing resource utilization. By caching data at edge nodes and distribut-
ing content closer to end-users, the strategies mitigate the strain on central cloud
infrastructure and alleviate network congestion. This leads to improved scala-
bility, reduced network strain, and enhanced user experiences, as data can be
retrieved and processed more efficiently.

Ultimately, the proposed caching strategies 1, 2 have significant implications
for cloud computing infrastructures and can greatly enhance their performance,
efficiency, and scalability. These strategies find wide applicability in various cloud
computing use-cases, such as content delivery networks (CDNs), edge computing,
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data centers, and distributed systems. Furthermore, by applying these strategies,
cloud providers can effectively distribute the load on network infrastructure,
optimize the data transfer, and ensure high-quality service delivery, resulting in
improved user experiences and enhanced resource utilization.

7 Conclusions and Future Work

In this work, we have introduced a novel MCMC-based caching strategy tailored
for the distinctive needs of IoT networks, focusing on the critical issues of data
volatility and limited energy resources. This innovative strategy has successfully
proven to improve the cache hit rates and enhance energy efficiency, benchmark-
ing significant advancements over traditional caching schemes such as LFU and
LRU, as well as other ML-based caching policies.

Our experimental results demonstrated the superiority of the MCMC-based
approach, showing the impressive capabilities of our method in environments
where file popularity changes over time. The MCMC-based adaptive caching so-
lution introduced in this paper has been adept at detecting shifts in popularity
distribution and triggering an efficient MCMC adaptation process, thereby dras-
tically reducing training time and improving overall performance. In addition,
we have presented a novel hierarchical caching structure that offers autonomous
decision-making for parent nodes processing queries from multiple edge nodes.
This innovative architecture enables a practicable capture of region-specific pop-
ularity distributions, thereby strengthening our caching strategy.

There are numerous directions for future research and development based
on the current results. The algorithms could be modified to include more dy-
namic and complex network scenarios, such as those with mobile nodes or nodes
with variable resources. This would necessitate additional algorithmic layers
of adaptability and responsiveness. It would be beneficial to investigate how
the MCMC-based approach could be combined with other AI-based methodolo-
gies, such as Deep Neural Networks or Genetic Algorithms, in order to improve
its performance. These methods may offer additional capabilities, including en-
hanced nonlinear data management and enhanced global policy optimisations.
Ultimately, it is crucial to evaluate the performance of the proposed approach in
real-world IoT environments and Cloud-based applications, which would provide
additional insight into its strengths and weaknesses as well as valuable feedback
for future improvements. In conclusion, this paper presents two novel caching
strategies that represent a significant advance in IoT networking. On the other
hand, there exists an unrealized potential, which promises future developments.
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